

Predicting Literacy in the Brain in Emergent Readers in Rural Côte d'Ivoire **A Longitudinal Study**

Henry Brice¹, Benjamin Zinszer², Joelle Hannon³, Fabrice Tanoh⁴, Konan Nana N'Goh Anicet⁵, Kaja K. Jasińska^{1,6} ¹University of Toronto ²Swarthmore College ³University of Delaware ⁴ Université Péléfero Gon Coulibaly ⁵Université Félix Houphouët-Boigny ⁶Haskins Laboratories

INTRODUCTION

Over 90% of developmental neuroscience is carried out in WEIRD Minority World contexts¹, with little understanding of developmental trajectories in Majority World contexts. In rural communities in Côte d'Ivoire, adult literacy rates are below 50%², and the poverty rate is over 60%³. Ivorian children typically speak one of 60+ Ivorian languages as their mother tongue, but literacy is acquired in L2 French.

RQ1: How does the neurological footprint of print processing predict literacy two years later?

Children in Côte d'Ivoire begin school at a broad range of ages, and so are exposed to literacy for the first time at a broad range of ages, which impacts the way writing is processed^{4,5}.

RQ2: How does the age of first exposure to literacy impact print processing in the brain?

METHODS

N = 132; 5th grade; Ages 8-15; M_{age}=10;7 Shimadzu LightNIRS, 47 channels, 7.4Hz AnalyzIR Toolbox, NIRS_KIT fNIRS passive task, Print & speech: Word, Pseudoword, Vocoded/False font French literacy tasks: Grapheme, Word, Pseudoword naming

DISCUSSION

in literacy skills two years later:

organisation of the reading network.

LITERACY PERFORMANCE

REFERENCES AND ACKNOWLEDGEMENTS

1. Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The Weirdest People in the World. *Behavioral and Brain Sciences*, 33(2–3), 61–83. 2. UNESCO Institute for Statistics, (2019). *Côte d'Ivoire*. <u>http://uis.unesco.org/en/country/CI</u>

3. World Bank, International Development Association (2020). *Côte d'Ivoire*. <u>https://data.worldbank.org/country/cote-divoire</u> 4. Jasinska, K. K., & Petitto, L. A. (2013). How age of bilingual exposure can change the neural systems for language in the developing brain: A functional near infrared spectroscopy investigation of syntactic processing in monolingual and bilingual children. Developmental Cognitive

Neuroscience, 6, 87–101. https://doi.org/10.1016/j.dcn.2013.06.005 5. Jasińska, K. K., & Petitto, L.-A. (2018). Age of Bilingual Exposure Is Related to the Contribution of Phonological and Semantic Knowledge to Successful Reading Development. Child Development, 89(1), 310–331. https://doi.org/10.1111/cdev.12745

FUNDERS: Jacobs Foundation Early Career Award 2015118455

(Jasińska, PI) Jacobs Foundation Science Capacity Building Grant

2015-1184 (Jasińska, PI)

Jacobs Foundation Research Grant (Jasinska, co-PI).

- Activation at baseline for written words in typical left hemisphere reading network predicts individual differences
 - Higher activation in L-IFG and temporal regions
 - Less activation in frontal and pre-central regions
- Age of exposure to literacy substantially impacts the
- Children who started school at a later age show greater recruitment of right hemisphere for print processing.
 - Lateralisation may not be a hallmark of fluent readers in children whose first exposure to literacy is at an older age

Our Promise to Yout