# Teaching Math to Students with Learning Disabilities

Trisha Salisbury and Amarinder Mehta

## Many children with learning disabilities (LDs) have trouble with:<sup>1-4</sup>

- conceptual understanding of many foundational mathematics skills
- using retrieval-based skills to solve computations and word problems
- working and long-term memory
- coordinating problem-solving steps
- organization, reading, and place value

Students with LDs benefit from approaches that utilize multiple modes of instruction, such as the Concrete-Representational-Abstract (CRA) sequence<sup>5</sup>

## What is the Concrete-Representational-Abstract (CRA) sequence?

- CRA instructional strategy combines effective components of **direct instruction** (behaviorist approach) and **discovery-learning** (constructivist approach) practices<sup>6</sup>
- Discovery-learning strategies involve representation to help students transition between conceptual and procedural knowledge
- Addresses three stages of conceptual understanding, procedural accuracy, and fluency by employing multisensory instructional techniques when introducing the new concepts
- Incorporates demonstration, modeling, guided practice, independent practice, and teacher feedback
- Three stages: concrete, representational, and abstract. Each stage builds upon the knowledge and skills developed in the preceding stage



## The CRA has been shown to be effective for:

- **Diverse mathematical concepts**: basic mathematics facts, place value, arithmetic, fractions, algebra, and word problems<sup>6–11</sup>
- Students with LDs and students identified as at risk for failure in mathematics<sup>1,6-8,11</sup>
- One-on-one and small group settings<sup>6</sup>
- Across grade levels<sup>11</sup>

## What makes the CRA effective?

- **Direct and explicit instruction strategy** introduces thinking strategies that are meant to become routine for problem solving and can be generalized to many math problems<sup>4,6</sup>
- **Verbalizing** thinking allows students to "think-aloud" allow students to scaffold their own thinking through questions and verbally plan the solution to the problem<sup>3</sup>
- Visual representations "help alleviate the amount of information students need to process while increasing their understanding of the concepts"<sup>3</sup>
- **Graphic organizers** reduce students' reliance on working memory, facilitating faster information processing, and allowing them to more consistency and efficiently solve math problems<sup>12</sup>

## Utilizing the CRA Approach in the Classroom



## The Three Stages of the CRA

#### CONCRETE 1

Students use 3D manipulatives to assist them while they learning the new math concept. The use of manipulatives increases the number of sensory inputs a student uses while learning the new concept, which improves student's ability to remember the process of solving the problem

#### REPRESENTATIONAL 2.

Students are taught to use 2D drawings to represent the same concepts. Manipulations enable students to break down the conceptual mathematical procedures into logical steps. When students encounter a math problem that they have trouble with, they can use this strategy to construct pictorial representations to assist them in finding the solution.

## 3. ABSTRACT

Students are taught how to translate the 2D drawings into the conventional mathematics notation to solve the problem.

## Tips for Using CRA in the Classroom

- Each lesson relates to the previous lessons. Explicit connections between lessons is • important for students to learn the targeted skill and related concepts, especially since students with LDs need explicit guidance and support when learning concepts<sup>11</sup>
- Researchers recommend taking at least three lessons to • teach each stage<sup>6</sup> and following the same format to maintain consistency
- At the start of each lesson, a graphic organizer should be provided to students and the teacher should (1) demonstrate the new skills and (2) give students the opportunity to model the process
- Students try to solve the problems through guided practice and the teacher provides feedback throughout to guide their learning
- Finally, students are given time to practice independently



## Additional Support for Students with LDs to Transition from Concrete to Abstract

- Explicit inquiry routine (EIR) can help students transition from CRA to abstract technique4 •
- EIR approach uses explicit, systematic instruction and sequences scaffolding to ensure students master the concept before they proceed to the next step in the curriculum.
- Students are taught how to demonstrate thinking through **dialogue** with the <u>teacher</u>, • peers, and themselves. During each dialogue, students use concrete, representational, and **abstract** methods to "drive the conversation"

### References

- Bouck, E. C., Satsangi, R. & Park, J. The Concrete-Representational-Abstract Approach for Students With Learning Disabilities: An Evidence-Based Practice Synthesis. Remedial Spec. Educ. 39, 211–228 (2018). Wagner, M., Newman, L., Cameto, R., Levine, P. & Garza, N. An Overview of Findings From Wave 2 of the National Longitudinal Transition Study-2 (NLTS2). 21 (U.S. Department of Education, 2006).
- Geary, D. C. Mathematics and Learning Disabilities. J. Learn. Disabil. 37, 4-15 (2004)
- Marita, S. & Hord, C. Review of Mathematics Interventions for Secondary Students With Learning Disabilities. Learn. Disabil. Q. 40, 29–40 (2017). Achieving fluency: special education and mathematics. (National Council of Teachers of Mathematics, 2011). Seclander, K. A., Johnson, G. R., Lockwood, A. B. & Medina, C. M. Concrete–Semiconcrete–Abstract (CSA) Instruction: A Decision Rule for Improving Instructional Efficacy. Assess. Eff. 6.

- 10-21 (2000). Witzel, B. S., Riccomini, P. J. & Schneider, E. Implementing CRA With Secondary Students With Learning Disabilities in Mathematics. Interv. Sch. Clin. 43, 270-276 (2008).
- Keeler, M. L. & Swanson, H. L. Does Strategy Knowledge Influence Working Memory in Children with Mathematical Disabilities? J. Learn. Disabil. 34, 418-434 (2001)

Interv. 38, 53-65 (2012) Minery. 30, 05-00 (2012). Mancl, D. B., Miller, S. P. & Kennedy, M. Using the Concrete-Representational-Abstract Sequence with Integrated Strategy Instruction to Teach Subtraction with Regrouping to Students with Learning Disabilities. Learn. Disabil. Res. Pract. 27, 152–166 (2012). 7.

<sup>8</sup> 

Miller, S. P. & Koffar, B. J. Developing Addition with Regrouping Competence among Second Grade Students with Mathematics Difficulties. Investig. Math. Learn. 4, 24–49 (2011). Butler, F. M., Miller, S. P., Crehan, K., Babbitt, B. & Pierce, T. Fraction Instruction for Students with Mathematics Disabilities: Comparing Two Teaching Sequences. Learn. Disabil. Res. Pract. 18, 99–111 (2003). 10. Maccini, P. & Hughes, C. A. Effects of a Problem-Solving Strategy on the Introductory Algebra Performance of Secondary Students With Learning Disabilities. Learn. Disabil. Res. Pract. 15,